

Quantifying Load Imbalance on Virtualized Enterprise Servers

Emmanuel Arzuaga and David Kaeli

Department of Electrical and Computer Engineering Northeastern University Boston MA

Traditional Data Centers

 Physical Enterprise Servers
 application dedicated
 multi-tiered: webserver, database, etc.

- Iow resource efficiency
- high cost of operation

Virtualized Data Centers

- □ Virtualization & Server Consolidation:
 - increase system efficiency
 - reduce the number of physical servers
 - reduce cost of operation

Live VM Migration

□ VM migration can be used to:

- maintain a balanced load on the system
- enable service level agreements (SLA)
- enhance application performance
- dynamically tune system to specific workload mix

Open Questions

- □ The ability to do live VM migrations is not enough, we still need to decide:
 - what to migrate?
 - where to migrate?
 - when to migrate?
- \square These decisions often depends on system load

Presentation Outline

- Load of a Virtualized Enterprise Server
- □ Imbalance in Cluster of Virtualized Servers
- Using VM Migration for Load Balancing
- Workload Characteristics
- □ Experimental Results
- □ Conclusions and Future Work

Virtualized Server Load

□ Capturing the load of a Virtualized Enterprise Server:

- It S be the set of physical servers and VM_{Host} the set of VMs currently assigned to server Host
- the overall server load metric is the VM-to-host usage rate:

$$VSL_{Host} = \sum_{resource} W_{resource} \times \frac{\sum_{v \in VM_{Host}} v_{resource} usage}{Host_{resource} capacity}$$

where *resource* is {*CPU*, *Memory*, *Disk*}

 \Box VSL_{Host} varies dynamically depending on the current load of the system

□ We can use it to balance the loads of multiple servers

Imbalance in Virtualized Cluster

- □ Based on VSL_{Host} , we can define a load set *L* containing VSL_{Host} values \forall servers $\in S$
- We want to measure how
 balanced L is at a particular
 time
 - our approach is to use the coefficient of variation:

$$I_{Metric} = \mathbf{C}_L = \frac{\sigma_L}{\mu L}$$

Virtualized Server Load Balancing

- We are interested in the use of live VM migration for load balancing
- □ The migration criteria is to migrate a VM to a different host if the system is imbalanced according to the imbalance metric (I_{Metric})
- \Box Our problem can be stated as:
 - migrate VM v from Host Source src to Host Target target such that I_{Metric} is reduced

VSL Inductive Balancing Method (VIBM)

□ Inductively predict future state:

•calculate $I_{Metric PREDICTED}$ if we move v to *target* and choose the move that provides the lowest value for I_{Metric} ,

 $VSL_{target} \longleftarrow VSL_{target} + v_{candidate}$ $VSL_{src} \longleftarrow VSL_{src} - v_{candidate}$

□ Follow a greedy approach

improve future state given current state

Workload Characteristics

- Enterprise servers run varied types of applications
 - database, webserver, application server
- Applications behave differently in terms of resource usage
 - even same application may change resource consumption over time (burstiness)
- \Box *I_{Metric}* can account for such changes

Experiments

 \Box Understand *I_{Metric}* in terms of:

accuracy of predicting future system state

□ simple & complex workloads

 how it relates to other resource management solutions (VMware DRS)

Evaluate possible performance improvement using *VIBM*

□ ESX 3.5 Servers

- dual processor, dual core Intel Xeon 2.33 Ghz
- 4 GB main memory

□ shared iSCSI SAN VM

- 700 GB capacity
- □ VMware VCenter Server
 - *VIBM* Migration Handler

VM Configuration

- □ Two different VM configurations:
 - 2 VCPU 1GB 50GB (large)
 - 1 VCPU 512MB 50GB (small)
- □ Experiments with two different VM sets:
 - 6VM (2-large,4-small)
 - 8VM (3-large,5-small)
- □ Initial VM Placement (all VMs running on one host)

Workloads

□ Simple CPU intensive workload

I_{Metric} prediction tests

□ Online Transaction Processing (OLTP)

- ■TPC-C based
- wholesale supplier managing orders
- transactions show random I/O behavior

IMetric Analysis: Prediction

IMetric Analysis: VIBM vs DRS

IMetric Analysis: Throughput Test

Throughput Test Results

Conclusions

- Presented a load metric for virtualized enterprise servers: VSL_{Host}
- □ Built a Load Balancing Scheme based on *VSL_{Host}*: *VIBM*
- VIBM produced migration patterns that improved system balance and throughput superior to VMware DRS
- \Box Future work includes the extension of *VSL*_{Host}
 - enable *VIBM* to suggest migrations that reduce power consumption
 - resource weights analysis
 - increase the workload mix inside VMs

Acknowledgements

□ This work was supported in part by:

- NSF Major Research Instrumentation Grant (Award Number MRI-0619616)
- Institute for Complex Scientific Software
- Gordon-CenSSIS, the Bernard M. Gordon Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the National Science Foundation (Award Number EEC-9986821)
- VMware through its VMAP program

Thank you!

