

Comparison of Script Characterization of web benchmarks

A presentation at SPECworkshop in Paderborn by the

members of osgweb group

Barry Arndt - IBM Hansfried Block - Fujitsu Dean Chandler - Intel Stephan Gradek - Fujitsu Rema Hariharan - AMD Sean Wu - Oracle

Overview

- The benchmark emulates web users accessing an application.
- Internet Banking, Ecommerce and Support download applications.
- Banking workload is 100% secure, Ecommerce workload is partly secure and Support is plain http workload.
- Applications run scripts in JSP/PHP/ASP
- How many user sessions that can be supported while meeting a pre-specified QOS?
- Web2009 also includes a power metric.

SPECweb2005

 \mathbf{spec}°

spec What is being characterized

- Performance of Scripts
- JSP, ASPX, PHP with SPECweb run on Linux and Windows
- Performance data running Olio (a web2.0 benchmark) on Solaris.
- All data collected with 2 processor systems
 - ✤ 8 cores
 - ✤ 1 Gb/s to Backend and 10 Gb/s to client
 - Local storage drives for data and logs
- Emulated 5000 user sessions

What we hope to achieve through spec this presentation

- Convince the audience about the performance differences between workloads and scripting methods used.
- Hint at the areas where software improvement might result in heavy performance improvements.
- Illustrate differences between web2.0 Olio based workloads and SPECweb workloads.

Platform independent and Script independent characteristics

- Request rate consistent between script types and software stacks
- This is a constant load based on QOS level
- Banking has highest request rate but lowest overall bytes per request

Network Send Bytes/sec

- Passing runs have constant send rate regardless of OS/script type
 - Banking 5058 bytes/session
 - Ecommerce 13908 bytes/session
 - Support 55490 bytes/session

Script Dependent characteristics

- •CPU usage pattern
- •Interrupts
- Context Switches
- •DRAM usage
- •Disk usage

- Banking workload creates highest CPU utilization due to SSL + encryption/decryption
- JSP lowest CPU utilization due to best pre-compiled performance
- PHP highest CPU utilization due to requirement to compile each request

- Banking PHP causes highest switch rate due to secure transactions and script compilations
- Linux lowest due to optimized SSL connections

- Ecommerce highest CS/req due to large amount of backend processing
- Banking CS/req is lower due to high number of requests and lowest network bytes per request

CPU Interrupts per Second

- Linux PHP workload has highest interrupt rate due to network I/O issues
- Linux JSP handles best for I/O and SSL handshake due optimized SSL stack

DRAM Bytes per Second

- Windows ASPX best memory usage better alignment to page size
- PHP scripts require higher memory bandwidth due to script compilation

DRAM Bytes per Request

• Windows ASPX best memory usage better alignment to page size

Olio

- This is a web2.0/cloud benchmark created by Sun/ Oracle and UC Berkeley.
- Based on social event calendar application.
- Uses memcached, backend dB (mysql) and PHP scripts.

Olio Layout

Comparing CPU for Olio with SPECweb

\mathbf{spec}°

Network bytes to Disk Bytes ratio

Highlights of differences between SPECweb workloads

•CPU usr load for Banking > Ecommerce > Support

- PHP cpu usage is lot higher than JSP or ASPX;
 PHP also has higher DRAM bandwidth usage due to script processing/compilation for each request.
 Windows shows lower DRAM bandwidth; but higher cpu utilization. (Reason ??)
- •DRAM bandwidth for PHP scripts was lot higher than those for processed scripts like JSP and ASPX

How do the web2.0 workloads differ from what we have?

•Much higher backend traffic

•Much higher Disk traffic; perhaps close to SPECwebSupport.

•Much higher client to SUT traffic; includes a lot of images and data, resulting in higher writes to SUT/ Backend.

•CPU usage is very similar to the Windows PHP/Support workload. Reason: it is handling PHP script processing.

•Network usage somewhat similar to SPECwebSupport.

Backup

DRAM bandwidth

