

Standard Performance Evaluation Corporation (SPEC)

SPECjbb2015 Benchmark
Design Document

7001 Heritage Village Plaza, Suite 225
Gainesville, VA 20155,
USA

SPEC OSG JAVA Committee

SPECjbb2015 Benchmark

25 May 2017 2 of 24 Copyright © 2007-2017 SPEC

Table of Contents
1. Introduction __ 5

1.1. About SPEC __ 5
1.1.1. SPEC Membership ___ 5
1.1.2. SPEC’s General Development Guidelines ___ 5

2. Scope and Goals ___ 6

2.1. Sockets and Systems ___ 6

2.2. Scaling __ 6

2.3. IO Component __ 6

2.4. Redundancy __ 6

2.5. Run Time __ 6

2.6. Platforms __ 7

2.7. Implementation Languages ___ 7

3. The SPECjbb2015 Benchmark Architecture ____________________________________ 7

3.1. Workload modeling ___ 7

3.2. Workload components ___ 8
3.2.1. Controller (Ctr): ___ 8
3.2.2. Transaction Injector(s) (TxI): ___ 8
3.2.3. Backend(s) (BE): ___ 8

4. Benchmark components configuration _______________________________________ 8

4.1. Single JVM instance using a single group __ 8

4.2. Multiple JVM instances using a Single Group _______________________________________ 9

4.3. Multiple JVM instances using Multiple Groups ______________________________________ 9

5. Controller details __ 9

6. Transaction Injector details ___ 10

7. Backend details __ 10

7.1. Backend entities ___ 10
7.1.1. Supermarket (SM) __ 11
7.1.2. Suppliers (SP) __ 11
7.1.3. Headquarters (HQ) __ 11

7.2. Backend thread pools ___ 12

7.3. Backend thread executors ___ 12

8. Traffic flow __ 12

8.1. Communication __ 13
8.1.1. Interconnect ___ 13
8.1.2. Transport ___ 13

SPECjbb2015 Benchmark

25 May 2017 3 of 24 Copyright © 2007-2017 SPEC

8.1.3. Connectivity ___ 13

8.2. Single Group Communication ___ 14

8.3. Multi-Group Communication ___ 14

9. Workload Requests and Transactions _______________________________________ 15

9.1. Requests issued at a negative exponential rate:____________________________________ 15
9.1.1. In-store purchase: __ 15
9.1.2. Online Purchase __ 16
9.1.3. Installment Purchase __ 16
9.1.4. Product Return ___ 16
9.1.5. Associativity of Category (AOC) __ 16
9.1.6. Associativity of Product (AOP) ___ 17
9.1.7. Business Report (BR) __ 17
9.1.8. Customer Buying Behavior ___ 17

9.2. Service requests being issued at a fixed interval: ___________________________________ 17
9.2.1. Discount issue/remove __ 17
9.2.2. Advertisement issue/remove ___ 17
9.2.3. Process invoice ___ 17
9.2.4. Installment purchase payment __ 17
9.2.5. Installment purchase payment void __ 17
9.2.6. Online In Store Pick Up __ 17
9.2.7. Online Shipping Order ___ 18

10. Workload inter-JVM process interaction _____________________________________ 18

10.1. Remote customer __ 18

10.2. Remote replenish __ 18

11. Workload Execution Phases ___ 19

11.1. The High-Bound IR (HBIR Search) __ 19

11.2. The Response-Throughput curve (RT-curve) _____________________________________ 20

11.3. The Validation phase __ 20

11.4. The profiling phase ___ 20

11.5. Reporter __ 20

12. Workload RT curve building details ___ 21

12.1. Warm-up phase: ___ 21

12.2. RT step levels __ 21
12.2.1. Retry criterion: ___ 21
12.2.2. First failure and max-jOPS __ 22

13. Requests issue ___ 22

14. Response time measurement to determine critical-jOPS ________________________ 22

15. Metrics Computation __ 23

16. Trademark __ 24

SPECjbb2015 Benchmark

25 May 2017 4 of 24 Copyright © 2007-2017 SPEC

17. Copyright Notice __ 24

SPECjbb2015 Benchmark

25 May 2017 5 of 24 Copyright © 2007-2017 SPEC

1. Introduction
The SPECjbb2015 benchmark replaces SPECjbb2005 as the next generation Java server business benchmark. This
document describes the design of the SPECjbb2015 benchmark.

For updates, please see: http://www.spec.org/jbb2015/docs/designdocument.pdf.

1.1. About SPEC
The Standard Performance Evaluation Corporation (SPEC) was formed by the industry in 1988 to establish industry
standards for measuring compute performance. SPEC has since become the largest and most influential
benchmark consortium world-wide. Its mission is to ensure that the marketplace has a fair and useful set of
metrics to analyze the newest generation of IT equipment.

The SPEC community has developed more than 30 industry-standard benchmarks for system performance
evaluation in a variety of application areas and provided thousands of benchmark licenses to companies, resource
centers, and educational institutions globally. Organizations using these benchmarks have published more than
40,000 peer-reviewed performance reports on SPEC’s website (http://www.spec.org/results.html).

SPEC has a long history of designing, developing, and releasing industry-standard computer system performance
benchmarks in a range of industry segments, and peer-reviewing the results of benchmark runs. Performance
benchmarking and the necessary work to develop and release new benchmarks can lead to disagreements among
participants. Therefore, SPEC has developed an operating philosophy and range of normative behaviors that
encourage cooperation and fairness amongst diverse and competitive organizations.

As a Java Business Benchmark, SPECjbb2000 was the first benchmark in this series emulating a 3-tier workload
inside a single JVM (Java Virtual Machine) instance. It was updated with SPECjbb2005 which featured more
complex transactions as well as multiple JVM instances within single OS image exercising some JDK 5
functionalities. Due to its simplicity and accuracy at measuring software and hardware capabilities, SPECjbb2005
has been very successful and among the most published benchmarks. The latest update in this series is the
SPECjbb2015 benchmark. The SPECjbb2015 benchmark addresses many recent trends including distributed
deployments and environments such as the Cloud and Virtualized environments. The SPECjbb2015 benchmark has
been architected from the ground up with no code borrowed from earlier SPECjbb versions. The benchmark
measures throughput as well as response time with graduated load levels.

1.1.1. SPEC Membership
SPEC membership is open to any interested company or entity. OSG members and associates are entitled to
licensed copies of all released OSG benchmarks and unlimited publication of results on SPEC's public website. An
initiation fee and annual fees are due for members. Nonprofit organizations and educational institutions have a
reduced annual fee structure. Further details on membership information can be found on
http://www.spec.org/osg/joining.html or requested at info@spec.org. Also a current list of SPEC members can be
found here: http://www.spec.org/spec/membership.html.

1.1.2. SPEC’s General Development Guidelines
SPEC’s philosophy and standards of participation are the basis for the development of the SPECjbb2015
benchmark. The benchmark is being developed cooperatively by a committee representing diverse and
competitive companies. The following guides the committee in the development of a benchmark that will be
useful and widely adopted by the industry:

• Decisions are reached by consensus. Motions require a qualified majority to carry.
• Decisions are based on reality. Experimental results carry more weight than opinions. Data and

demonstration overrule assertion.
• Fair benchmarks allow competition among all industry participants in a transparent market.
• Tools and benchmarks should be architecture-neutral and portable.

http://www.spec.org/jbb2015/docs/designdocument.pdf
http://www.spec.org/osg/joining.html
mailto:info@spec.org
http://www.spec.org/spec/membership.html

SPECjbb2015 Benchmark

25 May 2017 6 of 24 Copyright © 2007-2017 SPEC

• All who are willing to contribute may participate. Wide availability of results on the range of available
solutions allows the end user to determine the appropriate IT equipment.

Similar guidelines have resulted in the success and wide use of SPEC benchmarks in the performance and
power/performance industry and are essential to the success of the SPECjbb2015 benchmark.

2. Scope and Goals
The goal of the SPECjbb2015 benchmark is to evaluate the performance and scalability of environments for Java
business applications. In addition, the benchmark provides a flexible framework for measuring system
performance, including JRE performance, operating system performance and underlying hardware / system
performance. The following goals were put in place to meet these requirements:

• Simulate a relevant application model.
• Exercise the components of the Java runtime and its OS and hardware environment.
• Include a response time metric because response time is a major factor in service level agreements.
• Scale to use all available processors and memory resources.

2.1. Sockets and Systems
The System Under Test (SUT) can be a single stand-alone server, or a multi-node set of servers (limited to a set of
homogenous servers or blade servers) running single or multiple OS images. A multi-node SUT could consist of
server nodes that cannot run independent of a shared infrastructure such as a backplane, power-supplies, fans or
other elements. These shared infrastructure systems are commonly known as “blade servers” or “multi-node
servers”. Only identical servers are allowed in a multi-node SUT configuration. However, an SUT can consist of
multiple stand-alone server systems if those systems are being marketed as single solution. For more details,
please refer to the SPECjbb2015 benchmark Run and Reporting Rules.

2.2. Scaling
One of the drawbacks of SPECjbb2005 is the lack of interaction among JVM instances which causes the workload to
exhibit linear scaling. In the SPECjbb2015 benchmark, transactions interact across JVM processes and this allows
the workload to exhibit more realistic sub-linear scaling.

2.3. IO Component
The SPECjbb2015 benchmark exercises the CPU, memory and network I/O, but not disk I/O.

2.4. Redundancy
Many servers have redundancy built in for power supplies and cooling fans. Some servers include different levels
of redundancy for memory, disk, and even processors. The SPECjbb2015 benchmark does not test redundant
components.

2.5. Run Time
The average run time is 2 hours. Benchmark has the following phases:

• Search HBIR: ~15-20 minutes for typical system. It can take much longer for larger systems.
• RT curve building: ~90 minutes
• Validation: ~5 minutes
• Profile: ~2 minutes
• Report: ~2 minutes for ‘level 0’ while 30 minutes or more for ‘level 3’ with large Groups config

SPECjbb2015 Benchmark

25 May 2017 7 of 24 Copyright © 2007-2017 SPEC

2.6. Platforms
The SPECjbb2015 benchmark supports the following platform/OS/JVM combinations.

HW
Platform

x86
(AMD)

x86_64
(AMD)

x86_64
(AMD)

x86_64
(Intel)

x86_64
(Intel)

x86_64
(Intel)

Itanium
(Intel)

POWER
(IBM)

POWER
(IBM)

SPARC
(Oracle)

SPARC
(Fujitsu)

OS

Windows
Server LINUX Solaris Windows

Server LINUX Solaris HP-UX 11i AIX LINUX Solaris Solaris

Note: OS refers to versions (service packs and patch levels) that are current at the SPECjbb2015 benchmark
release.

2.7. Implementation Languages
The benchmark code is written in Java using Java SE 7 APIs.

3. The SPECjbb2015 Benchmark Architecture
The SPECjbb2015 benchmark has several improvements over SPECjbb2013 as documented in
SPECjbb2015_release_notes.txt. Earlier, SPECjbb2013 has been architected, designed and implemented from
scratch to represent the latest Java application features. It also exercises the latest data formats (XML),
communication using compression, messaging with security as well as the latest JDK 7 features. Overall, it features
significant redesign over earlier versions, including but not limited to:

• A sustainable full system capacity throughput metric (max-jOPS) and a throughput under response time
constraint metric (critical-jOPS).

• Multiple supported run configurations (Composite/single host, MultiJVMs/ single host, Distributed/single
or multi hosts) that allow diverse users to analyze and overcome bottlenecks at multiple layers of the
system stack (e.g., hardware, OS, JVM, application).

• The exercising of features that are new in Java 7 (e.g., the fork-Join framework)
• Support for virtualization and cloud environments that have well-defined hardware dedicated to the

benchmark while the benchmark is running. This includes all private cloud environments and public cloud
environments that meet the above requirement.

3.1. Workload modeling
The application scenario chosen for the SPECjbb2015 benchmark is a world-wide supermarket company IT
infrastructure being exercised by

• POS(Point Of Sales) in local Supermarkets(SM) as well as online purchases,
• Issuing and managing coupons/discounts and customer payments
• Managing receipts, invoices and user database in the company Headquarters (HQ)
• Interaction with Suppliers (SP) for replenishing the inventory
• Data mining(DM) operations in the company Headquarters to identify sale patterns and generating

quarterly business reports

Customers purchase products from Supermarkets and Supermarkets replenish their inventories from Suppliers as
needed. The Headquarters manages the information about the other entities and may mine this information to
determine or influence “hot” purchases. Even though purchases are predominant, other Java APIs are also being
exercised to achieve a balanced design.

SPECjbb2015 Benchmark

25 May 2017 8 of 24 Copyright © 2007-2017 SPEC

The benchmark can be deployed in a way that it simulates customer data being spread across several Java
processes, resulting in inter-process communication. This scenario offers a natural way to scale the workload and
still have a compliant run. Refer to the User’s Guide for more details.

3.2. Workload components
The benchmark consists of following three components:

3.2.1. Controller (Ctr):
The Controller directs the execution of the workload. There is always one controller. In addition, there is one
optional module called Time Server. When enabled, Time Server module interacts with Controller to ensure timing
accuracy by measuring and recording the time-offset between Time Server and Controller system.

3.2.2. Transaction Injector(s) (TxI):
The TxI issues requests and services to Backend(s) as directed by the Controller and measures end-to-end response
time for issued requests.

3.2.3. Backend(s) (BE):
The Backend contains business logic code that processes requests and services from the TxI, and notifies the TxI
that a request has been processed.

4. Benchmark components configuration
The benchmark components (Controller, TxI(s) and Backend(s)) can be configured to run inside a single JVM
instance or across multiple JVM instances.

There is always exactly one Controller component and at least one Backend. Each Backend has one or more
dedicated Transaction Injector(s) mapped to it. This logical mapping is called a “Group”. The topology for a Group
can be defined using command line options in the run script.

4.1. Single JVM instance using a single group
This is the simplest case of a deployment with the intended goal to encourage scaling inside a single JVM instance.
In this scenario, a group consists of only one Backend and one Transaction Injector mapped to that Backend.

SPECjbb2015 Benchmark

25 May 2017 9 of 24 Copyright © 2007-2017 SPEC

4.2. Multiple JVM instances using a Single Group
In this scenario, a group consists of one Backend and one or more Transaction Injectors (TxI) mapped to this
Backend. However, all requests and transactions are confined to a single Backend.

4.3. Multiple JVM instances using Multiple Groups
In a multiple group configuration each group has one Backend and one or more Transaction Injectors (TxI). By
design, some percentage of requests and transactions involve inter-process communication between Backends.

5. Controller details
The Controller directs the execution of all the other benchmark components.

At the beginning of a run, the Controller waits for handshake messages from all the other benchmark components.
Once these benchmark components are launched, they send handshake messages to the Controller. The Controller
starts recording the progress of the run in the controller.log and controller.out files. The Controller also records
detailed measurement information into a binary log file used to generate the reports later. Simultaneously, other
agents start individual logs to record progress.

SPECjbb2015 Benchmark

25 May 2017 10 of 24 Copyright © 2007-2017 SPEC

If the controller receives handshake messages from all the agents, it takes the benchmark through various phases.
Otherwise, it shuts down the benchmark.

The Controller.log file stores performance information (updated every second) whereas the controller.out file
stores summary progress information.

The Controller also operates a mechanism called heartbeat. Each agent sends heartbeats at a configurable
frequency to the Controller. If the timing threshold for receiving heartbeats is exceeded, the Controller shuts down
the benchmark.

By default the Controller will launch the Reporter at the end of a run. The Reporter produces result files in a result
directory and moves log files to an appropriate directory. The Reporter may also be invoked manually as described
in the User Guide.

The Controller by itself can run using a 512MB heap. The reporter requires 2GB heap for most run configurations
and may require larger heap for larger systems.

6. Transaction Injector details
Transaction Injectors (TxI) are the load generators and trackers.

The Controller passes configuration parameters to each TxI after successful handshakes. The Controller divides the
total aggregated injection rate uniformly across all TxI. The heterogeneous loading of Transaction Injectors is not
supported and was not a design goal.

The TxI issues three types of requests: probe requests, saturate requests, and service requests. All these requests
drive the load, but the probe requests also collect profiling data. Probe requests are issued individually and
saturate requests are issued as variable sized batches. Service requests are issued at a fixed time interval to
simulate monthly installment payments and daily shipping of orders, for example.

The TxI has a distinct thread pool for each type of request. In the case of saturate requests and service requests, a
thread issues the request and doesn’t wait for the response. In the case of a probe request, a thread waits for the
response so that it can record the response time.

Once a TxI receives the load to be issued, it issues the load to the mapped Backend and records response time
using probes. The TxI compiles an overall summary of response time information for each iteration and sends this
summary to the Controller. The Controller aggregates the summaries from all TxI(s) to produce an overall
summary.

7. Backend details
The Backend is the component that executes business logic and has roles such as processing requests coming from
TxI(s), storing data, and performing background tasks.

7.1. Backend entities
In each Backend, there are three main entities Supermarkets(SM), Suppliers(SP), and Headquarters(HQ). There is
exactly one HQ in a Backend. The number of SM(s) and SP(s) are configurable though only two SMs and two SPs
are allowed for a compliant run. All these entities communicate using the Interconnect described later in this
document.

SPECjbb2015 Benchmark

25 May 2017 11 of 24 Copyright © 2007-2017 SPEC

7.1.1. Supermarket (SM)
For a compliant run, there are two SMs per Backend. The SM maintains inventory as well as some locally cached
customer information. A Customer purchases groceries from a Supermarket; this purchase transaction is exercised
heavily during a benchmark run. The Supermarket will complete the transaction and send the receipt to the HQ.
Over time, this will result in depleting the Supermarket's shelves. This triggers the Supermarket to generate orders
to the Supplier to replenish those shelves.

7.1.2. Suppliers (SP)
The Suppliers provide Supermarkets with goods to re-stock their shelves. Every Supplier is responsible for a set of
Supermarkets in a given area. The Suppliers are involved in taking orders from Supermarkets and delivering goods
to Supermarkets. If a Supermarket replenishes its inventory using a Supplier from a remote Backend, it is called a
remote replenish transaction. Each Supplier has an endless supply of products.

7.1.3. Headquarters (HQ)
There is one HQ per Backend. Each HQ manages the Supermarkets, Suppliers, and Customers for its associated
Backend. This role involves managing information about the goods and products offered in the Supermarket(s),
managing selling prices and monitoring the flow of goods and money between Suppliers and Supermarkets. The
HQ also maintains customer information such as financial records, receipts sent by SM as well as invoices. The HQ
also maintains a mirror inventory in case any SM goes down. The HQ maintains receipts, which are used by the

SPECjbb2015 Benchmark

25 May 2017 12 of 24 Copyright © 2007-2017 SPEC

“Data Mining” transactions which analyze the buying and selling behavior observed in the Supermarkets. Overall,
HQ functionality is the second most heavily exercised transaction after SM.

7.2. Backend thread pools
All entities within a Backend share a common thread pool to enable load balancing across the entities. Multiple
thread pools are required to make progress and avoid circular dead locks.

7.3. Backend thread executors
Requests to the Backend may be processed in batches. Batch processing has been implemented using the Java SE 7
Fork/Join framework which exploits parallelism on the modern multi-core processors. The implementation also
serves as a best-practices example of the Fork/Join framework.

8. Traffic flow
There are two types of traffic: control traffic and business data traffic. The Controller directs the benchmark phases
using control traffic with agents inside the other components. The Transaction Injector initiates the business data
traffic to drive each Backend.

SPECjbb2015 Benchmark

25 May 2017 13 of 24 Copyright © 2007-2017 SPEC

8.1. Communication
The SPECjbb2015 benchmark exercises two types of communication, intra-JVM communication and inter-JVM
communication. The entities inside a Backend exhibit intra-JVM communication, but sometimes these entities also
communicate with the entities inside remote Backend(s).

The communication mechanism consists of the following components:

8.1.1. Interconnect
The Interconnect (IC) is the central communication fabric. Each JVM instance has its own IC. The IC provides inter-
JVM communication, including the name space for all Backend entities and automatic routing.

8.1.2. Transport
The Transport mechanism provides business data marshalling among the entities of a Backend. In the SPECjbb2015
benchmark the configuration of this marshaling mechanism for different transaction types cannot be changed for
compliant runs.

8.1.3. Connectivity
The SPECjbb2015 benchmark connectivity mechanism uses the client-server protocol. The mechanism is
configurable to use either of the Grizzly/NIO, Grizzly/HTTP or Jetty/HTTP protocols. For compliant runs, the

SPECjbb2015 Benchmark

25 May 2017 14 of 24 Copyright © 2007-2017 SPEC

mechanism must be configured to use Grizzly/NIO. The Grizzly/NIO protocol is tunable via properties described in
the sections 16.1.2 and 16.1.3 of the User’s Guide.

8.2. Single Group Communication
A single group consists of one Backend and one or more Transaction Injectors (TxI) mapped to this Backend. All
TxI(s) and Backend share a common IC for the communication layer. In a single group, all requests and transactions
are confined to a single Backend.

8.3. Multi-Group Communication
In a benchmark run involving multiple groups, a percentage of requests and transactions involve inter-process
communication between different Backends. As the number of groups increases, this remote traffic also increases.

Remote traffic among Backend(s) consists of messages and requests. Messages are sent without the sender thread
blocking for the response, whereas requests are sent with the sender thread blocking to receive a response. To
avoid a circular deadlock, the thread pools inside the Backend are tiered.

There are two types of remote transactions: remote product replenishes and remote customer information
queries. The remote traffic percentage for a replenish remains fixed whereas the percentage for a customer
information query increases based on the formula, Round (Ln (n^3), 0), where n is number of groups.

SPECjbb2015 Benchmark

25 May 2017 15 of 24 Copyright © 2007-2017 SPEC

9. Workload Requests and Transactions
The Transaction Injector issues two types of requests:

• Requests issued at a negative exponential rate: The requests in this category include probe requests and
saturate requests

• Requests issued at a fixed interval: These requests simulate daily or monthly repetitive activities such as
monthly installment payments, and the weekly issuing of coupons and advertisements.

The transactions generated by the above requests are of two types: primary transactions and secondary aka
background transactions. Primary transactions are initiated as a result of request(s) issued by the Transaction
Injector. Secondary (background) transactions are initiated when a threshold is crossed. An example of a
secondary transaction would be the product replenish transaction, which is initiated when a Supermarket’s
inventory falls below a threshold.

9.1. Requests issued at a negative exponential rate:
These requests fall into two categories: customer-initiated requests and data-mining requests. As noted below,
there are different types of customer-initiated and data-mining requests, and the benchmark maintains the mix
ratio, or percentage of each of these request types.

Customer-initiated requests include:

• In Store Purchase – a customer purchases items from a supermarket in-store.
• Online Purchase – a customer purchases goods online from one or more supermarkets
• Installment Purchase – A customer pays for an item in installments. Examples would be a car purchase or

a high-end electronics purchase.
• Product return – A customer returns an item and receives a refund.

Data-mining requests include:

• Associativity of Category – Identify the categories of products that are commonly purchased together
• Associativity of Products – Identify the products that are commonly purchased together
• Business Report – Simulate quarterly business summary
• Customer Buying Behavior – Analyze the customer buying behavior

The TxI maintains the following ratios that specify what percentage of the total requests are made up of requests
of a specific type. These ratios cannot be changed for a compliant run but users have the ability to alter them for
research purposes.

• In Store Purchase – 50%
• Online Purchase –35%
• Installment Purchase – 10%
• Product Return – 2.65%
• Associativity Of Category – 0.1%
• Associativity Of Product – 1%
• Business Report - 0.25%
• Customer Buying Behavior – 1%

Below is a more detailed description of the execution flow for each of the above requests.

9.1.1. In-store purchase:
1) The Transaction Injector sends a Supermarket an InstorePurchaseRequest.

SPECjbb2015 Benchmark

25 May 2017 16 of 24 Copyright © 2007-2017 SPEC

2) The Supermarket receives the request and initiates the execution of an InStorePurchaseTransaction, This
transaction executes the below steps.

3) Select a random customer who will execute the store purchase.
4) Retrieve a collection of products to purchase based on a “hotness” algorithm that considers what

products the customer has frequently purchased in the past.
5) Reserve a specific quantity of each product and calculate the total price taking into account available

discounts and coupons. Then add all the reserved products to the customer’s shopping cart. In the
process, it issue advertisements for each product purchased.

6) If most of the products are available, proceed to checkout. Otherwise, if too many products need to be
replenished throw an exception.

7) Generate a receipt with the total price of items purchased.
8) Check that the customer has sufficient credit to purchase the items.
9) If the customer has sufficient credit, then move the desired quantities of each item out of the store

inventory and debit the cost of each item from the customer’s credit. If the store runs out of any item in
the process, send the Suppliers a request to replenish that item.

10) Send a receipt back to the Headquarters indicating that the purchase has completed.

9.1.2. Online Purchase
The steps are similar to those of an InStorePurchase. However, each online purchase has a target supermarket for
reserving the goods. If the target supermarket does not have enough goods to service the purchase, the
transaction will send requests to one or more supermarkets on an “Alternate Supermarket List” to reserve the
remaining goods. Also during the checkout phase, the goods will either be picked up in store or shipped to the
customer.

9.1.3. Installment Purchase
The steps are similar to those of an InStorePurchase. However, the payment is in installments. In addition, the
receipt is placed in an installment entity which debits a customer’s bank account every time a payment is due until
the full payment has been made.

9.1.4. Product Return
1) The transaction injector sends a supermarket a ProductReturnRequest.
2) The supermarket receives the request and initiates the execution of a ProductReturnTransaction.
3) The Supermarket sends it’s associated Headquarters a request to pick a random receipt containing

products to be returned.
4) The Headquarters responds with a receipt containing a list of products, their quantities, prices and the

supermarket from which each item was purchased.
5) The Supermarket scans each item on the receipt. If the item was purchased locally, it moves the specified

quantities of that item into its own inventory. Otherwise, it messages the owning supermarket to restock
its shelves with that item.

6) The Supermarket messages the Headquarters to refund the customer. This involves crediting the
customer’s account with the total prices of the returned items.

9.1.5. Associativity of Category (AOC)
Each product belongs to one or more categories. The AOC transaction randomly picks a product category and
identifies the purchase receipts containing at least one product purchase from that category. It then compiles a list
of the barcodes appearing on each of these receipts which are local to that receipt’s SM. Based on this list it
identifies the product categories for other frequently appearing barcodes. This information is used when issuing
advertisements.

SPECjbb2015 Benchmark

25 May 2017 17 of 24 Copyright © 2007-2017 SPEC

9.1.6. Associativity of Product (AOP)
The AOP transaction randomly picks a receipt and a barcode appearing on that receipt. It then compiles a list of
the barcodes appearing on any receipt that also contains the specified barcode. Based on this list, it identifies
other frequently appearing barcodes. This information is used to issue advertisements.

9.1.7. Business Report (BR)
The BR transaction analyzes the collected receipts and invoices. It summarizes the number of receipts, total paid
money, total quantity of items, number of used coupons, quantity of items per barcode, number of unique items in
receipts, number of times a coupon was used and the money saved by a customer from coupon usage. For invoices
it also summarizes the quantity of items replenished per barcode.

After collecting the data above, the BR transaction generates a Business Report for the HQ containing the following
information: total unique customers, average spending per customer, average visits per customer, worst selling
products, top replenished products, total replenished products, and total money paid in all SMs. The resulting HQ
Business Report is sent as a response to the BR request.

9.1.8. Customer Buying Behavior
The CBB transaction picks a customer from a randomly chosen receipt. It then lists the barcodes for products
which this customer has purchased. From this list it identifies other frequently appearing barcodes. This
information is used to drive the issuing of advertisements.

9.2. Service requests being issued at a fixed interval:
Service requests are issued at a fixed interval to simulate daily, weekly or quarterly activities. These requests
represent background tasks resulting from the negative exponential rate requests described in section 9.1 . For
example, an online purchase may result in an online shipping order. As a result, a periodic service request will be
generated to process each online shipping order.

There are the following types of service requests:

9.2.1. Discount issue/remove
The Discount issue and remove transactions are used by the SM to adjust the hotness of products and impact
purchasing decisions as well as the price of a product. These requests are usually sent in pairs, with a discount
being issued and later removed.

9.2.2. Advertisement issue/remove
The Advertisement issue/remove request manages advertisements for a specific SM. If a customer chooses a
product which has an associated advertisement, then this advertisement is copied to the customer’s profile and
influences the customer’s future purchasing decisions.

9.2.3. Process invoice
This request triggers the HQ to process invoices and pay its Suppliers.

9.2.4. Installment purchase payment
The Installment Purchase request triggers the HQ to process an installment payment for an installment purchase in
flight.

9.2.5. Installment purchase payment void
This request triggers the HQ to process the return of a product that was purchased in installments. This involves
refunding the customer for all installment payments made.

9.2.6. Online In Store Pick Up
This request results in online orders being picked up from an SM.

SPECjbb2015 Benchmark

25 May 2017 18 of 24 Copyright © 2007-2017 SPEC

9.2.7. Online Shipping Order
This request results in online orders being shipped.

10. Workload inter-JVM process interaction
Many applications deployments leverage inter-JVM process communication. To encourage optimizations in this
space, this workload has two types of transactions that result in remote communication between JVM processes.

10.1. Remote customer
All purchase requests require a customer association to execute a purchase. For most purchases, a local customer
associated to the local HQ is used. In a certain percentage of purchase requests, the customer information is
requested from a remote HQ within a remote Backend. The remote customer percentage increases with the
number of groups, according to the following formula: (round(ln (n^3), 0)) , where n is number of groups. This
results in several interactions between the JVM processes to acquire customer information for the customer ID,
product checkout and purchase receipt.

10.2. Remote replenish
A replenish transaction is a secondary or background transaction initiated by an SM when the inventory for an
item falls below a threshold. Most replenish transactions are processed by local Suppliers, but a specific
percentage of them are processed by suppliers in a remote Backend. This results in several interactions with other
JVM processes to acquire information about inventories, purchase confirmations, and invoices.

SPECjbb2015 Benchmark

25 May 2017 19 of 24 Copyright © 2007-2017 SPEC

11. Workload Execution Phases
Once all the benchmark components are launched, all TxI(s) and Backend(s) components send a handshake
messages to the Controller. The controller starts recording progress information in controller.log and
controller.out and detailed measurement information in the <binary log> in the current benchmark directory.
Other agents start individual logs to record progress. After a successful handshake, the controller directs the
execution of the benchmark through the following stages:

• The High-Bound IR (HBIR Search) is used to determine an upper bound on the system capacity for
throughput, the maximum load a system can handle without response time constraints.

• The Response-Throughput curve (RT-curve) building phase iterates over successively increasing IR levels to
determine the final metrics of the benchmark, namely the max-jOPS which is a pure throughput metric,
and the critical-jOPS which is a throughput under response time constraint metric

• The validation phase checks that data structures were in their correct state during the run.
• The profiling phase gathers additional statistics that will be displayed in the advanced report.
• The Reporter is launched automatically by the Controller at the end of the run to generate the default

‘level 0’ report

11.1. The High-Bound IR (HBIR Search)
The HBIR phase estimates the maximum Injection Rate (HBIR) the system can handle. In the later phase known as
RT curve building, the RT step levels are incremented by 1% of this computed HBIR. For testing and research, the
HBIR value can be manually set using a property but for compliant runs, it must be determined automatically by
this phase.

In more detail, the Controller increases the injection rate in fixed increments and runs for a fixed duration at each
injection rate level to determine whether the system is able to successfully execute at that level. If the system

SPECjbb2015 Benchmark

25 May 2017 20 of 24 Copyright © 2007-2017 SPEC

successfully executes at that level, the controller increases the injection rate. Otherwise, it backtracks to the
previously successful injection rate (after draining all the queues and ramping up again from 0 to that level) and
ramps up from there in smaller increments.

At the end of this process, the High Bound IR (HBIR) is identified and used during the RT-curve building phase.

11.2. The Response-Throughput curve (RT-curve)
Response-Throughput (RT) curve building phase is used to determine the overall maximum throughput capacity of
the system, both with and without response time requirements. This is done by evaluating at each RT step level
starting 0% of HBIR, then incrementing the step level by 1% of HBIR until maximum capacity is reached. This phase
produces the data that is used to determine both metrics max-jOPS and critical-jOPS. After finding max-jOPS the
benchmark runs for several more step levels to show as how system handles throughput levels that are higher
than max-jOPS.

For most systems, max-jOPS should be between 70% and 90% of HBIR. In rare cases, max-jOPS > 100% of HBIR is
possible and benchmark will continue to test RT step levels >100% of HBIR to determine max-jOPS.

Systems using JVM configurations which result in large pauses from GC (Garbage Collection) may find that max-
jOPS sometime can be much lower than HBIR and many RT step levels are continue to pass even beyond max-jOPS.
This happens because severe pause(s) are occurring during the RT curve building phase that results in a RT step
level failure, while beyond this RT step levels will pass, as pauses are occasional. Since max-jOPS is last successful
RT step level before first failure, the max-jOPS metric will be lower. User should resolve the cause of severe
pauses to remedy this issue.

11.3. The Validation phase
Upon the completion of the RT curve building phase, the benchmark data structures are re-initialized because
system was tested beyond maximum capacity and it is possible that system queues may have grown to be too
large. After a successful re-initialization, the validation phase is initiated to validate the business logic. During this
phase, a given IR is executed and then validation checks are performed against data structures corresponding to
the business logic to ensure a correct state and accurate execution.

11.4. The profiling phase
The profiling phase is used to collect an intrusive profile of the benchmark run. The gathered information can be
found in the advanced report which the user can generate by invoking the reporter manually or by enabling the
option –l <report_level 0/1/2/3> at the Controller launch command line. For the manual invocation of reporter,
refer to section 11 in the SPECjbb2015 benchmark User Guide.

11.5. Reporter
At the end of the benchmark run, the Controller automatically invokes the reporter unless the command line
option “-skipReport” is enabled.

Note: Until the reporter is invoked, no result directory is created and all logs including the binary log are in the
current directory.

When the reporter is invoked, it takes two input files, the binary log file and the template-[C/M/D].raw file. The
reporter creates a directory in SPECjbb2015/result/<binary log name dir>/report-<NUM>/ and generates all the
output files for a default ‘level 0’ HTML report as well as the *.raw files into this directory. (The “-t <result_dir>”
option may be used to override this default directory setting.) The user can override the default reporting level
using the option “-l <report level 0/1/2/3>” is used. For a compliant run, the report level must be 0.

SPECjbb2015 Benchmark

25 May 2017 21 of 24 Copyright © 2007-2017 SPEC

12. Workload RT curve building details
The RT curve building phase is the phase that determines both the benchmark metrics max-jOPS and critical-jOPS.
It consists of three sub-phases: warm-up, RT curve building till max-jOPS, and stressing the system beyond max-
jOPS. These sub-phases are described below:

12.1. Warm-up phase:
Once HBIR is determined, the benchmark re-initializes all the data structures at the beginning of the RT curve
phase. It then executes a warm-up phase to exercise these re-initialized data strictures. This warm-up phase runs
for 180 seconds at 10% of the HBIR. This default can be set up to 90 % of the HBIR for a compliant run. There is no
passing criterion applied to the warm-up phase.

12.2. RT step levels
After the warm-up phase, the RT curve building phase begins. The benchmark increments the injection rate at
steps that are 1% of the previously determined HBIR and determines whether or not the benchmark successfully
executes at each injection rate level. This process continues until the benchmark stresses the full system capacity,
at which point the metric max-jOPS is determined.

In more detail, each RT step level has a settle period followed by a steady period. When transitioning from the (n-
1)th RT step level to n th step level, the IR is increased from (n-1)% to n% of the HBIR and the starting time for nth
RT step level is recorded.

The criteria used to decide whether the benchmark is able to successfully execute at a step level is the following:

 The Actual Injection Rate (aIR) and the rate at which the backend processes requests (PR) must be within
+1% of the target injection rate IR

For the settle period, if a system meets the above criteria any time after 3 seconds from the start of the RT step
level, the benchmark passes execution at the settle phase, and we move to the steady phase. If system is unable to
pass the above criteria to a maximum of 30 seconds, system fails to settle. A retry criterion is applied as described
later.

The steady phase has a minimum duration of 60 seconds. After this duration has elapsed, the pass/fail criteria
described above are applied every second. If the system passes the criteria before its 90 seconds into the steady
phase, the current RT step level is declared successful and the Controller initiates the transition to the (n+1)th RT
step level. If the passing criteria fails, a retry criterion is applied as described below.

12.2.1. Retry criterion:
For an RT step, if either of the settle or steady phases fails to meet the passing criterion, a retry is allowed. The rule
is that an RT step level can have exactly 1 retry and that there can be a maximum of 10 total retries over the entire
RT curve building phase.

SPECjbb2015 Benchmark

25 May 2017 22 of 24 Copyright © 2007-2017 SPEC

During a retry attempt, the settle period can be up to 180 seconds while the steady period has the same 60 sec
minimum and 90 sec maximum time window. If an RT step level is able to pass after a retry, the number of retries
left is decremented by one and the Controller takes the benchmark to the next RT step level. However, if the RT
step level is not able to pass even after the retry, that RT step level is declared a failure. If there are no retries left,
an RT step level will be declared a failure if it does not pass at the first attempt.

The number of retries per RT step level and the maximum number of retries for the whole run are user-
configurable, but for compliant runs, the default values are one retry per RT step level and a total of 10 retries for
whole RT curve building phase.

12.2.2. First failure and max-jOPS
Once the Controller determines that an RT step level has failed exhausting its retries, the current RT step level is
called “First Failure”. The IR at the previous RT step level is selected as the benchmark metric max-jOPS.

The Controller continues to drive the system a few RT step levels beyond the max-iOPS to demonstrate that the
system has indeed reached full capacity. The Controller stops the RT phase once three RT step levels fail in a row.
The number of consecutive failures of the RT step levels (impacting where the RT curve building phase stops) can
be configured as described in section 2.5 of Run and Reporting Rules.

13. Requests issue
There are three types of requests probes, saturate and service. Only probes and saturate requests are counted
towards the injection rate (IR). First, the Controller equally divides the total IR to be issued among the TxI(s). Then
each TxI tries to issue its quota of the IR using probe requests during a quantum issue window. If the TxI can issue
all of its IR quota using probe requests, no saturate requests are issued. In other words, saturate requests are
issued only for the part of the IR budget left over from probe requests. As a result, at a lower IR, most of the IR is
issued using probes while at a higher IR, a larger share will be issued using saturate requests.

Probe requests are issued by threads which wait for the response. The default number of issuing threads is 64. As a
result, as the response time increases, fewer probe requests can be issued. The total number of probe requests
must be a minimum percentage of the total IR. Otherwise, the benchmark issues a warning for the user to increase
the number of thread pool workers or modify the TxI/Group configuration parameter as described in section 2.5 of
Run and Reporting Rules.

Saturate requests are issued in variable sized batches using non-blocking threads. As a result, the TxI is always able
to fully load a system. The batch size can be configured for research purposes, but for a compliant run the default
setting must be used.

A user can view the distributions of probe requests and saturate requests in the ‘level 0’ HTML report graph.

Service requests are issued at a fixed time interval and are independent of probe and saturate requests.

14. Response time measurement to determine critical-jOPS
Response times are computed as the time from when a request is issued to the time when a response is received
indicating that the request was successfully processed. Response time is measured using probe requests and the
accuracy of this measurement depends on having sufficiently many probe requests issued at each IR level.

For each RT step level, transaction response times are measured and recorded in the binary log file of the run.
During the report generation, the Reporter analyzes the response time data and computes percentile response
times for each RT step level. The Reporter plots the percentile response time data as a function of the RT step level
in the “Overall Throughput RT curve” graph of the ‘level 0’ HTML report.

SPECjbb2015 Benchmark

25 May 2017 23 of 24 Copyright © 2007-2017 SPEC

15. Metrics Computation
The benchmark has two metrics, a pure throughput metric called max-jOPS and a throughput under response time
constraint metric called critical-jOPS. In the reporter output files, these metrics will be displayed in the format:

SPECjbb2015:run_category_name max-jOPS and
SPECjbb2015:run_category_name critical-jOPS

where run_category_name is Composite, Multi-JVM or Distributed.

These two metrics are computed during the RT curve building phase discussed in section 11.2.

The max-jOPS is the last successful injection rate before the first failing injection rate where the reattempt also
fails. For example, if during the RT-curve phase the injection rate of 80000 passes, but the next injection rate of
90000 fails on two successive attempts, then the max-jOPS would be 80000.

The critical-jOPS computation is more complex. The critical-jOPS is computed based on 5 SLA (Service Level
Agreement) points for the response time from the issue of request to receipt of a response that the request was
completed. These points are: 10ms, 25ms, 50ms, 75ms and 100ms. These values were chosen to maintain a
reasonable spread of response time targets used by different industries (without favoring a specific target), and be
“challenging enough” that system designers will be motivated to improve the key areas (e.g., hardware, OS, JVM)
that impact Java response times.

The overall critical-jOPS is computed by taking the geomean of the individual critical-jOPS computed at these five
SLA points, namely:

• Critical-jOPSoverall = Geo-mean of (critical-jOPS@ 10ms, 25ms, 50ms, 75ms and 100ms response time SLAs)

During the RT curve building phase the Transaction Injector measures the 99th percentile response times at each
step level for all the requests (see section 9) that are considered in the metrics computations. It then computes
the Critical-jOPS for each of the above five SLA points using the following formula:

(first * nOver + last * nUnder) / (nOver + nUnder)

Where:

‘first’ – the first IR of RT step level with p99 response time higher than SLA

‘last’ – the last IR of RT step level with p99 response time less than SLA

nOver – the number of RT step levels between ‘first’ to ‘last’ where p99 response time > SLA

nUnder – the number of RT step levels between ‘first’ to ‘last’ where p99 response time < or = SLA.

The benchmark results files contain information about individual critical-jOPS as well as the overall critical-jOPS.

SPECjbb2015 Benchmark

25 May 2017 24 of 24 Copyright © 2007-2017 SPEC

16. Trademark
SPEC and the name SPECjbb are registered trademarks of the Standard Performance Evaluation Corporation.
Additional product and service names mentioned herein may be the trademarks of their respective owners.

17. Copyright Notice
Copyright © 2007-2017 Standard Performance Evaluation Corporation (SPEC). All rights reserved.

	1. Introduction
	1.1. About SPEC
	1.1.1. SPEC Membership
	1.1.2. SPEC’s General Development Guidelines

	2. Scope and Goals
	2.1. Sockets and Systems
	2.2. Scaling
	2.3. IO Component
	2.4. Redundancy
	2.5. Run Time
	2.6. Platforms
	2.7. Implementation Languages

	3. The SPECjbb2015 Benchmark Architecture
	3.1. Workload modeling
	3.2. Workload components
	3.2.1. Controller (Ctr):
	3.2.2. Transaction Injector(s) (TxI):
	3.2.3. Backend(s) (BE):

	4. Benchmark components configuration
	4.1. Single JVM instance using a single group
	4.2. Multiple JVM instances using a Single Group
	4.3. Multiple JVM instances using Multiple Groups

	5. Controller details
	6. Transaction Injector details
	7. Backend details
	7.1. Backend entities
	7.1.1. Supermarket (SM)
	7.1.2. Suppliers (SP)
	7.1.3. Headquarters (HQ)

	7.2. Backend thread pools
	7.3. Backend thread executors

	8. Traffic flow
	8.1. Communication
	8.1.1. Interconnect
	8.1.2. Transport
	8.1.3. Connectivity

	8.2. Single Group Communication
	8.3. Multi-Group Communication

	9. Workload Requests and Transactions
	9.1. Requests issued at a negative exponential rate:
	9.1.1. In-store purchase:
	9.1.2. Online Purchase
	9.1.3. Installment Purchase
	9.1.4. Product Return
	9.1.5. Associativity of Category (AOC)
	9.1.6. Associativity of Product (AOP)
	9.1.7. Business Report (BR)
	9.1.8. Customer Buying Behavior

	9.2. Service requests being issued at a fixed interval:
	9.2.1. Discount issue/remove
	9.2.2. Advertisement issue/remove
	9.2.3. Process invoice
	9.2.4. Installment purchase payment
	9.2.5. Installment purchase payment void
	9.2.6. Online In Store Pick Up
	9.2.7. Online Shipping Order

	10. Workload inter-JVM process interaction
	10.1. Remote customer
	10.2. Remote replenish

	11. Workload Execution Phases
	11.1. The High-Bound IR (HBIR Search)
	11.2. The Response-Throughput curve (RT-curve)
	11.3. The Validation phase
	11.4. The profiling phase
	11.5. Reporter

	12. Workload RT curve building details
	12.1. Warm-up phase:
	12.2. RT step levels
	12.2.1. Retry criterion:
	12.2.2. First failure and max-jOPS

	13. Requests issue
	14. Response time measurement to determine critical-jOPS
	15. Metrics Computation
	16. Trademark
	17. Copyright Notice

